资源类型

期刊论文 515

会议视频 2

年份

2023 48

2022 39

2021 37

2020 37

2019 39

2018 33

2017 23

2016 19

2015 29

2014 33

2013 25

2012 14

2011 21

2010 37

2009 17

2008 24

2007 20

2006 5

2005 3

2004 4

展开 ︾

关键词

热电联产 3

热释放速率 3

吸附 2

多联产 2

数学模型 2

水化热 2

6016 合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

Tetrasphaera 1

Cu(Inx 1

Ga1–x)Se2 1

H2S 1

Inconel 718合金 1

Laves相 1

M23C6 碳化物 1

MOF基催化剂 1

McCormick包络 1

展开 ︾

检索范围:

排序: 展示方式:

Heat-spreading analysis of a heat sink base embedded with a heat pipe

B. V. BORGMEYER, H. B. MA,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 143-148 doi: 10.1007/s11708-010-0013-1

摘要: A simplified model predicting the heat transfer performance of a heat sink base with a high thermal conductivity was developed. Numerical analysis was performed using the commercial software FLUENT. The investigation indicates that for heat sink bases with a high effective thermal conductivity, such as the base embedded with a typical heat pipe, the entire heat sink can be modeled as a flat plate with a uniform temperature and an effective convection heat transfer coefficient. This simplified model can be used to determine the heat transfer performance of a heat sink embedded with a typical heat pipe or vapor chamber.

关键词: heat pipe     heat sink     microprocessor heat removal    

Experimental study of primary and secondary side coupling natural convection heat transfer characteristicsof the passive residual heat removal system in AP1000

Zhimin QIU, Daogang LU, Jingpin FU, Li FENG, Yuhao ZHANG

《能源前沿(英文)》 2021年 第15卷 第4期   页码 860-871 doi: 10.1007/s11708-021-0744-1

摘要: Passive residual heat removal heat exchanger (PRHR HX), which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400, plays an important role in critical accidental conditions. The primary and secondary side coupling heat transfer characteristics of the passive residual heat removal system (PRHRS) determine the capacity to remove core decay heat during the accidents. Therefore, it is necessary to investigate the heat transfer characteristics and develop applicable heat transfer formulas for optimized design. In the present paper, an overall scaled-down natural circulation loop of PRHRS in AP1000, which comprises a scaled-down in-containment refueling water storage tank (IRWST) and PRHR HX models and a simulator of the reactor core, is built to simulate the natural circulation process in residual heat removal accidents. A series of experiments are conducted to study thermal-hydraulic behaviors in both sides of the miniaturized PRHR HX which is simulated by 12 symmetric arranged C-shape tubes. For the local PRHR HX heat transfer performance, traditional natural convection correlations for both the horizontal and vertical bundles are compared with the experimental data to validate their applicability for the specific heat transfer condition. Moreover, the revised natural convection heat transfer correlations based on the present experimental data are developed for PRHR HX vertical and lower horizontal bundles. This paper provides essential references for the PRHRS operation and further optimized design.

关键词: passive residual heat removal heat exchanger (PRHR HX)     C-shape tube     revised heat transfer correlations     coupled natural convection    

Recovery of waste heat in cement plants for the capture of CO

Ruifeng DONG, Zaoxiao ZHANG, Hongfang LU, Yunsong YU

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 104-111 doi: 10.1007/s11705-011-1166-0

摘要: Large amounts of energy are consumed during the manufacturing of cement especially during the calcination process which also emits large amounts of CO . A large part of the energy used in the making of cement is released as waste heat. A process to capture CO by integrating the recovery and utilization of waste heat has been designed. Aspen Plus software was used to calculate the amount of waste heat and the efficiency of energy utilization. The data used in this study was based on a dry process cement plant with a 5-stage preheater and a precalciner with a cement output of 1 Mt/y. According to the calculations: 1) the generating capacity of the waste heat recovery system is 4.9 MW. 2) The overall CO removal rate was as high as 78.5%. 3) The efficiency of energy utilization increased after the cement producing process was retrofitted with this integrated design.

关键词: cement industry     waste heat     recovery     utilization     CO2 removal    

Absorption heat pump for waste heat reuse: current states and future development

Zhenyuan XU, Ruzhu WANG

《能源前沿(英文)》 2017年 第11卷 第4期   页码 414-436 doi: 10.1007/s11708-017-0507-1

摘要: Absorption heat pump attracts increasing attention due to its advantages in low grade thermal energy utilization. It can be applied for waste heat reuse to save energy consumption, reduce environment pollution, and bring considerable economic benefit. In this paper, three important aspects for absorption heat pump for waste heat reuse are reviewed. In the first part, different absorption heat pump cycles are classified and introduced. Absorption heat pumps for heat amplification and absorption heat transformer for temperature upgrading are included. Both basic single effect cycles and advanced cycles for better performance are introduced. In the second part, different working pairs, including the water based working pairs, ammonia based working pairs, alcohol based working pairs, and halogenated hydrocarbon based working pairs, for absorption heat pump are classified based on the refrigerant. In the third part, the applications of the absorption heat pump and absorption heat transformer for waste heat reuse in different industries are introduced. Based on the reviews in the three aspects, essential summary and future perspective are presented at last.

关键词: absorption     heat pump     heat transformer     waste heat     working pair    

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 376-384 doi: 10.1007/s11705-011-1121-0

摘要: In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.

关键词: MHD boundary layer     unsteady flow     heat transfer     thermal radiation     heat source/sink     shrinking sheet     suction/injection    

Application of entransy dissipation theory in heat convection

Mingtian XU, Jiangfeng GUO, Lin CHENG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 402-405 doi: 10.1007/s11708-009-0055-4

摘要: In the present work, formulas for calculating the rates of the local thermodynamic entransy dissipation in convective heat transfer in general, and the internal and external flows in particular, are established. Practically, these results may facilitate the application of entransy dissipation theory in thermal engineering. Theoretically they shed light on solving the contradiction of the minimum entropy production principle with balance equations in continuum mechanics.

关键词: entransy dissipation     heat convection     heat exchanger    

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第4期   页码 479-486 doi: 10.1007/s11708-013-0277-3

摘要: There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.

关键词: heat exchanger     liquid metal     mini-channel     heat dissipation     heat transfer coefficient    

Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

OUYANG Li, LIU Wei

《能源前沿(英文)》 2008年 第2卷 第4期   页码 406-409 doi: 10.1007/s11708-008-0094-2

摘要: The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new composite porous solar wall with different porosity is proposed to reduce the disadvantageous effect.

关键词: incidence     thermal conductivity     heat-storage     exchange     composite    

Major applications of heat pipe and its advances coupled with sorption system: a review

Yang YU, Guoliang AN, Liwei WANG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 172-184 doi: 10.1007/s11708-019-0610-6

摘要: Heat pipe utilizes continuous phase change process within a small temperature drop to achieve high thermal conductivity. For decades, heat pipes coupled with novel emerging technologies and methods (using nanofluids and self-rewetting fluids) have been highly appreciated, along with which a number of advances have taken place. In addition to some typical applications of thermal control and heat recovery, the heat pipe technology combined with the sorption technology could efficiently improve the heat and mass transfer performance of sorption systems for heating, cooling and cogeneration. However, almost all existing studies on this combination or integration have not concentrated on the principle of the sorption technology with acting as the heat pipe technology for continuous heat transfer. This paper presents an overview of the emerging working fluids, the major applications of heat pipe, and the advances in heat pipe type sorption system. Besides, the ongoing and perspectives of the solid sorption heat pipe are presented, expecting to serve as useful guides for further investigations and new research potentials.

关键词: heat pipe     sorption system     heat transfer     solid sorption heat pipe    

A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system

Nabil KAHOUL,Mourad HOUABES,Ammar NEÇAIBIA

《能源前沿(英文)》 2015年 第9卷 第2期   页码 170-179 doi: 10.1007/s11708-015-0353-y

摘要: When designing a maximum power point tracking (MPPT) algorithm, it is often difficult to correctly predict, before field testing, the behavior of this MPPT under varying solar irradiation on photovoltaic (PV) panels. A solution to this problem is to design a maximum power point trackers simulator of a PV system used to test MPPT algorithms. This simulator must have the same role as the MPPT card of the PV panel and thus will fully emulate the response of a real MPPT card of the PV panel. Therefore, it is a good substitute to help to test the peak power trackers of the PV system in the laboratory. This paper describes a simple peak power trackers simulator of the PV system which has a short response time thus, can be used to test MPPT algorithms under very rapid variation condition. The obtained results and the theoretical operation confirm the reliability and the superior performance of the proposed model.

关键词: photovoltaic module     DC-DC converter     design     maximum power point tracking (MPPT) card     microprocessor    

Characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles

Tingting DU, Wenjing DU

《工程管理前沿(英文)》 2019年 第6卷 第1期   页码 70-77 doi: 10.1007/s42524-019-0005-8

摘要:

The characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles (STHXsHB) were illustrated through a theoretical analysis and numerical simulation. The ideal helical flow model was constructed to demonstrate parts of the flow characteristics of the STHXsHB, providing theoretical evidence of short-circuit and back flows in a triangular zone. The numerical simulation was adopted to describe the characteristics of helical, leakage, and bypass streams. In a fully developed section, the distribution of velocity and wall heat transfer coefficient has a similar trend, which presents the effect of leakage and bypass streams. The short-circuit flow accelerates the axial velocity of the flow through the triangular zone. Moreover, the back flow enhances the local heat transfer and causes the ascent of flow resistance. This study shows the detailed features of helical flow in STHXsHB, which can inspire a reasonable optimization on the shell-side structure.

关键词: heat exchanger     overlapped helical baffle     triangular zone     helical flow    

Augmentation of natural convective heat transfer by acoustic cavitation

Jun CAI, Xiulan HUAI, Shiqiang LIANG, Xunfeng LI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 313-318 doi: 10.1007/s11708-009-0064-3

摘要: An experimental study was conducted to investigate the effects of acoustic cavitation on natural convective heat transfer from a horizontal circular tube. The experimental results indicated that heat transfer could be enhanced by acoustic cavitation and had the best effect when the head of the ultrasonic transducer was over the midpoint of the circular tube, and the distance between the head and the tube equaled 15 mm. The augmentation at low heat flux was better than that in the case of high heat flux. Based on experimental results, the correlation formula of Nusselt number for water was obtained.

关键词: heat transfer enhancement     augmentation     acoustic cavitation     acoustic streaming     convective heat transfer    

Effect of variable heat capacities on performance of an irreversible Miller heat engine

Xingmei YE

《能源前沿(英文)》 2012年 第6卷 第3期   页码 280-284 doi: 10.1007/s11708-012-0203-0

摘要: Based on the variable heat capacities of the working fluid, the irreversibility coming from the compression and expansion processes, and the heat leak losses through the cylinder wall, an irreversible cycle model of the Miller heat engine was established, from which expressions for the efficiency and work output of the cycle were derived. The performance characteristic curves of the Miller heat engine were generated through numerical calculation, from which the optimal regions of some main parameters such as the work output, efficiency and pressure ratio were determined. Moreover, the influence of the compression and expansion efficiencies, the variable heat capacities and the heat leak losses on the performance of the cycle was discussed in detail, and consequently, some significant results were obtained.

关键词: Miller cycle     variable heat capacity     irreversibility     parametric optimization    

Numerical simulation and experimental research on heat transfer and flow resistance characteristics ofasymmetric plate heat exchangers

Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 267-282 doi: 10.1007/s11708-020-0662-7

摘要: The asymmetric plate heat exchanger (APHE) has the possibility of achieving balanced pressure drops on both hot and cold sides for situations with unbalanced flow, which may in turn enhance the heat transfer. In this paper, the single-phase water flow and heat transfer of an APHE consisted of two types of plates are numerically (400≤ ≤12000) and experimentally (400≤ ≤3400) investigated. The numerical model is verified by the experimental results. Simulations are conducted to study the effects of , an asymmetric index proposed to describe the geometry of APHEs. The correlations of the Nusselt number and friction factor in the APHEs are determined by taking and working fluids into account. It is found that an optimal exists where the pressure drops are balanced and the heat transfer area reaches the minimum. The comparison between heat transfer and flow characteristics of the APHEs and the conventional plate heat exchanger (CPHE) is made under various flow rate ratios of the hot side and the cold side and different allowable pressure drops. The situations under which APHE may perform better are identified based on a comprehensive index .

关键词: plate heat exchanger     asymmetric     simulation     correlation     heat transfer enhancement    

Heat transfer characteristics of high heat flux vapor chamber

Dongchuan MO, Shushen LU, Haoliang ZHENG, Chite CHIN,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 166-170 doi: 10.1007/s11708-009-0076-z

摘要: To meet the challenge of heat spreading in electronic products, highly efficient high heat flux heat transfer vapor chambers have been manufactured and their heat transfer characteristics have been studied by a fast test system. A solid copper block with the same shape as the vapor chamber is used to compare the performance of the vapor chamber. The result shows that, it will take about 5min to achieve a steady state in the fast test system. The heat transfer characteristics of the vapor chamber are more superior to those of the copper block. In this paper, total thermal resistance of the test system is used to evaluate the heat transfer characteristics of the vapor chamber, because it has already been used to consider both the spreading thermal resistance and the flatness of the vapor chamber.

关键词: high heat flux     vapor chamber (VC)     heat transfer characteristics     fast test    

标题 作者 时间 类型 操作

Heat-spreading analysis of a heat sink base embedded with a heat pipe

B. V. BORGMEYER, H. B. MA,

期刊论文

Experimental study of primary and secondary side coupling natural convection heat transfer characteristicsof the passive residual heat removal system in AP1000

Zhimin QIU, Daogang LU, Jingpin FU, Li FENG, Yuhao ZHANG

期刊论文

Recovery of waste heat in cement plants for the capture of CO

Ruifeng DONG, Zaoxiao ZHANG, Hongfang LU, Yunsong YU

期刊论文

Absorption heat pump for waste heat reuse: current states and future development

Zhenyuan XU, Ruzhu WANG

期刊论文

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

期刊论文

Application of entransy dissipation theory in heat convection

Mingtian XU, Jiangfeng GUO, Lin CHENG,

期刊论文

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

期刊论文

Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

OUYANG Li, LIU Wei

期刊论文

Major applications of heat pipe and its advances coupled with sorption system: a review

Yang YU, Guoliang AN, Liwei WANG

期刊论文

A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system

Nabil KAHOUL,Mourad HOUABES,Ammar NEÇAIBIA

期刊论文

Characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles

Tingting DU, Wenjing DU

期刊论文

Augmentation of natural convective heat transfer by acoustic cavitation

Jun CAI, Xiulan HUAI, Shiqiang LIANG, Xunfeng LI,

期刊论文

Effect of variable heat capacities on performance of an irreversible Miller heat engine

Xingmei YE

期刊论文

Numerical simulation and experimental research on heat transfer and flow resistance characteristics ofasymmetric plate heat exchangers

Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU

期刊论文

Heat transfer characteristics of high heat flux vapor chamber

Dongchuan MO, Shushen LU, Haoliang ZHENG, Chite CHIN,

期刊论文